R Tutorials
R Data Structures
R Graphics
R Statistics
R Examples
A data set is a set of data, usually presented in a table.
There is a popular built-in data set on R called "mtcars" (Motor Trend Car Road Tests), available in 1974 Motor Trend US Magazine.
In the examples below (and in the following chapters), we will use a data set for mtcars
, for mathematical purposes:
mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Information About the Data Set
You can use the question mark (
?
) To get information about amtcars
data set:
Example
# Use the question mark to get information about the data set
?mtcars
Result
mtcars {datasets} R Documentation Motor Trend Car Road Tests
Description
The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).
Usage
mtcarsFormat
A data frame with 32 observations on 11 (numeric) variables.
[, 1] mpg Miles/(US) gallon [, 2] cyl Number of cylinders [, 3] disp Displacement (cu.in.) [, 4] hp Gross horsepower [, 5] drat Rear axle ratio [, 6] wt Weight (1000 lbs) [, 7] qsec 1/4 mile time [, 8] vs Engine (0 = V-shaped, 1 = straight) [, 9] am Transmission (0 = automatic, 1 = manual) [,10] gear Number of forward gears [,11] carb Number of carburetors Note
Henderson and Velleman (1981) comment in a footnote to Table 1: 'Hocking [original transcriber]'s noncrucial coding of the Mazda's rotary engine as a straight six-cylinder engine and the Porsche's flat engine as a V engine, as well as the inclusion of the diesel Mercedes 240D, have been retained to enable direct comparisons to be made with previous analyses.'
Source
Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.
Examples
require(graphics) pairs(mtcars, main = "mtcars data", gap = 1/4) coplot(mpg ~ disp | as.factor(cyl), data = mtcars, panel = panel.smooth, rows = 1) ## possibly more meaningful, e.g., for summary() or bivariate plots: mtcars2 <- within(mtcars, { vs <- factor(vs, labels = c("V", "S")) am <- factor(am, labels = c("automatic", "manual")) cyl <- ordered(cyl) gear <- ordered(gear) carb <- ordered(carb) }) summary(mtcars2)
Get Information
Use the
dim()
function to determine the size of the data set, and the function of thenames()
to view dynamic words:
Example
Data_Cars <- mtcars # create a variable of the mtcars data set for better organization
# Use dim() to find the dimension of the data set
dim(Data_Cars)
# Use names() to find the names of the variables from the data set
names(Data_Cars)
Result
[1] 32 11 [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" [11] "carb"
Use the
rownames()
function to find the name of each row in the first column, which is the name of each car:
Example
Data_Cars <- mtcars
rownames(Data_Cars)
Result
[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant" [7] "Duster 360" "Merc 240D" "Merc 230" [10] "Merc 280" "Merc 280C" "Merc 450SE" [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood" [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128" [19] "Honda Civic" "Toyota Corolla" "Toyota Corona" [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28" [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2" [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino" [31] "Maserati Bora" "Volvo 142E"
From the examples above, we found that the data set has 32 variables (Mazda RX4, Mazda RX4 Wag, Datsun 710, etc.) and 11 variables (mpg, cyl, disp, etc.).
Variables are defined as something that can be measured or calculated.
Here is a brief description of the variations from the mtcars data set:
Variable Name Description mpg Miles/(US) Gallon cyl Number of cylinders disp Displacement hp Gross horsepower drat Rear axle ratio wt Weight (1000 lbs) qsec 1/4 mile time vs Engine (0 = V-shaped, 1 = straight) am Transmission (0 = automatic, 1 = manual) gear Number of forward gears carb Number of carburetors
Print Variable Value
If you want to print all the variable values, access the data frame using the
$
symbol, and the variable name (for examplecyl
(cylinders)):
Example
Data_Cars <- mtcars
Data_Cars$cyl
Result
[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
Sort Variable Values
To sort values, use the
sort()
function:
Example
Data_Cars <- mtcars
sort(Data_Cars$cyl)
Result
[1] 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8
In the examples above, we see that most cars have 4 and 8 cylinders.
Analyzing the Data
Now that we have some information about the data set, we can begin to analyze it with other statistical numbers.
For example, we can use the
summary()
function to obtain a mathematical summary:
Example
Data_Cars <- mtcars
summary(Data_Cars)
Don't worry if you do not understand the numbers coming out. You will know better soon.
The
summary()
function returns six statistical numbers for each variable:
- Min
- First quantile (percentile)
- Median
- Mean
- Third quantile (percentile)
- Max
We will cover them all, along with other mathematical numbers in the following chapters.
© copyright 2021. All rights reserved.